Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Masumi Itazaki, Rie Ujihara and Hiroshi Nakazawa*

Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan

Correspondence e-mail:
nakazawa@sci.osaka-cu.ac.jp

Key indicators

Single-crystal X-ray study
$T=203 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.053$
$w R$ factor $=0.125$
Data-to-parameter ratio $=20.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
fac-[Bis(2-pyridylmethyl)amine- $\boldsymbol{\kappa}^{3} N$]tribromoindium(III)

In the title compound, $f a c$ - $\left[\operatorname{InBr}_{3}\left\{\mathrm{NH}\left(\mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\right\}\right]$, the $\mathrm{In}^{\text {III }}$ atom is coordinated by three bromide ligands and a tridentate bis(2-pyridylmethyl)amine ligand. A mirror plane passes through the In atom, one Br atom and central NH group. The molecule exhibits facial octahedral stereochemistry, with In -Br bond lengths of 2.5682 (13) and 2.6060 (9) \AA, and InN bond lengths of 2.311 (6) and 2.328 (9) Å.

Comment

A limited number of crystal structures have been reported to date for complexes of indium(III) halides of the type $\operatorname{In} X_{3} L$, where L is a tridentate $N, N^{\prime}, N^{\prime \prime}$-donor ligand, viz. $\left[\operatorname{InCl}_{3} L\right][L$ = 2,6-bis(1-phenyliminoethyl)pyridine (Abram et al., 1997), 2-[2-(pyridylamino)phenylazo]pyridine (Das et al., 2003) and 2,6-di-2-pyridylpyridine (Butcher et al., 2003)] and [$\left.\operatorname{InBr}_{3} L\right]$ (L = 1,4,7-trimethyl-1,4,7-triazacyclononane; Willey et al., 2001). We now report the isolation and structural characterization of the title compound, (I).

(I)

The molecular structure of (I) reveals that the $\mathrm{In}^{\mathrm{III}}$ atom has three Br ligands with a facial geometry and a tridentate bis(2pyridylmethyl)amine (bpa) ligand (Fig. 1). A mirror plane passes through In1, Br1, N1 and H1N. Only one crystal structure has been reported to date for a six-coordinate complex formulated as $M X_{3}(\mathrm{bpa})(X=$ halogen $) ;\left[\mathrm{FeCl}_{3}(\mathrm{bpa})\right]$ (Viswanathan et al., 1996). The $\mathrm{In}-\mathrm{N}$ bond distances in (I) (Table 1) are similar to those observed in [$\operatorname{InBr}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}$] [2.32 (2) Å; Small \& Worrall, 1982] and in $\left[\operatorname{InBr}_{3}\{-\mathrm{N}(\mathrm{Me})-\right.$ $\left.\mathrm{CH}_{2}-\right\}_{3}$] [2.338 (7), 2.355 (8) and 2.360 (7) Å; Willey et al., 2001]. The $\mathrm{In}-\mathrm{Br}$ bond trans to the bridging amino group [2.5682 (13) \AA] is shorter than that trans to the pyridyl ligand [2.6060 (9) \AA]. The former is shorter than the $\mathrm{In}-\mathrm{Br}$ bond distances of 2.5974 (11), 2.6053 (11) and 2.6054 (11) \AA in $\left[\mathrm{InBr}_{3}\left\{-\mathrm{N}(\mathrm{Me})-\mathrm{CH}_{2}-\right\}_{3}\right]$, whereas the latter distance is slightly longer than that of 2.593 (3) \AA in $\left[\operatorname{InBr}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right]$. The constriction of the $\mathrm{N}-\mathrm{In}-\mathrm{N}$ bond angles allows relaxation of the $\mathrm{Br}-\mathrm{In}-\mathrm{Br}$ bond angles in (I), as observed previously (Willey et al., 2001).

Experimental

A solution of bis(2-pyridylmethyl)amine ($0.448 \mathrm{~g}, 2.25 \mathrm{mmol}$) in diethyl ether (10 ml) was added dropwise to a solution of InBr_{3}

Received 15 June 2006
Accepted 19 June 2006
($0.785 \mathrm{~g}, 2.21 \mathrm{mmol}$) in diethyl ether $(10 \mathrm{ml})$. The resulting white suspension was stirred at ambient temperature for 1 h , then the solution was filtered. The white solid was washed repeatedly with diethyl ether ($10 \mathrm{ml} \times 5$ times) and dried in vacuo to give (I) (yield $1.167 \mathrm{~g}, 2.10 \mathrm{mmol}, 95 \%$). White crystals of (I) suitable for X-ray diffraction study were obtained by cooling a methanol solution at 253 K over a period of few days.

Crystal data

$\left[\operatorname{InBr}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3}\right)\right.$]
$M_{r}=553.80$
Orthorhombic, Pnma
$a=13.995$ (2) \AA
$b=14.227$ (2) \AA
$c=7.9682(12) \AA$
$V=1586.6(4) \AA^{3}$

Data collection

Rigaku/MSC Mercury CCD diffractometer
ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.410, T_{\text {max }}=0.840$

$Z=4$

$D_{x}=2.319 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=9.04 \mathrm{~mm}^{-1}$
$T=203$ (2) K
Plate, colorless
$0.12 \times 0.06 \times 0.02 \mathrm{~mm}$

14768 measured reflections 1877 independent reflections 1802 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.056$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}\right. \\
& +3 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.84 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.69 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1

The molecule structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity [symmetry code: (i) $x,-y+\frac{1}{2}, z$].
(Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by a Grant-in-Aid (No. 15205010) and by a Grant-in-Aid for Science Research on Priority Areas (No. 18033044, Chemistry of Coordination Space) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

Abram, S., Maichle-Mössmer, C. \& Abram, U. (1997). Polyhedron, 16, 21832191.

Butcher, R. J., George, C., Muratore, N. \& Purdy, A. P. (2003). Acta Cryst. E59, m1107-m1109.
Das, S., Hung, C.-H. \& Goswami, S. (2003). Inorg. Chem. 42, 5153-5157.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Molecular Structure Corporation (2004). TEXSAN. Version 2.0. MSC, The Woodlands, TX 77381-5209, USA.
Rigaku (2001). CrystalClear. Version 1.3 SP1. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Small, R. W. H. \& Worrall, I. J. (1982). Acta Cryst. B38, 932-934.
Viswanathan, R., Palaniandavar, M., Balasubramanian, T. \& Muthiah, P. T. (1996). J. Chem. Soc. Dalton Trans. pp. 2519-2525.

Willey, G. R., Aris, D. R., Haslop, J. V. \& Errington, W. (2001). Polyhedron, 20, 423-429.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

